как сделать блок схему

ВАЖНО! Для того, что бы сохранить статью в закладки, нажмите: CTRL + D

Задать вопрос ВРАЧУ, и получить БЕСПЛАТНЫЙ ОТВЕТ, Вы можете заполнив на НАШЕМ САЙТЕ специальную форму, по этой ссылке >>>

Блок-схема представляет собой графическое отображение какого-либо процесса, четко показывающего систематическую последовательность всех этапов выполнения поставленной задачи, а также все группы, которые вовлечены в данный процесс. Такая схема является системой графических символов (блоков) и линий переходов (стрелок) между ними. Каждый из таких блоков соответствует определенному шагу алгоритма. Внутри такого символа дается описание данного действия.

Для чего применяют блок-схемы?

Упомянутые системы призваны выполнять следующие функции:

— разрабатывать новый процесс;

— описывать и документировать текущий алгоритм;

— разрабатывать модификации к данному процессу либо исследовать звенья с вероятным возникновением ошибок и сбоев;

— определять, когда, где и как можно менять текущий алгоритм, с целью проверки устойчивости всей системы.

Разработка последовательности операций

Любая блок-схема строится на основе алгоритма действий, описывающего работу устройства или программы. Поэтому сначала строится сама система. «Алгоритмом» называют описание последовательности операций для решения поставленной задачи. По сути, это правила выполнения необходимых процессов обработки информации. Прежде чем приступить к построению алгоритма, требуется четко определить задачу: что необходимо получить в результате, какая исходная информация нужна, а какая уже имеется, есть ли ограничения для ее получения. После этого составляется список действий, которые необходимо осуществить для получения требуемого результата.

Типы алгоритмов

На практике чаще всего применяют следующие виды блок-схем:

— графическая, то есть в основе находятся геометрические символы;

— словесная: составляется с помощью обычных слов того или иного языка;

— псевдокоды: представляют собой полуформализованное описание на условно-алгоритмическом языке, которое включает в себя элементы языка программирования и фразы литературного, а также общепринятые математические символы;

— программная: для записи используются исключительно языки программирования.

Блок-схема устройства: описание

Графическое представление последовательности действий включает в себя изображение алгоритма, описывающего связи функциональных блоков данной схемы, которые соответствуют выполнению одного либо нескольких действий. Блок-схема массива состоит из отдельных элементов, размеры и правила построения которых определены государственным стандартом. Для каждого типа действия (ввода данных, вычисления значений выражений, проверки условий, управления повторением действий, окончания обработки и др.) предусмотрена отдельная геометрическая фигура, представленная в виде блока. Эти символы соединяются линиями, определяющими очередность действий.

Основные элементы, употребляемые при составлении блок-схем

Полный список графических символов, используемых для описания алгоритма, состоит из 42 элементов. Его весь мы приводить не будем, а рассмотрим только основное.

1. Процесс означает вычислительное действие либо последовательность таких действий, изменяющих значения, размещения данных или форму представления. Для наглядности схемы такие элементы можно объединить в один блок. Данный символ имеет вид прямоугольника, внутри которого записываются комментарии, сопровождающие выполнение операции (либо группы операций).

2. Решение. Данный блок применяется для обозначения перехода управления по определенному условию. В каждом таком элементе указывается вопрос, сравнение или условие, которые его определяет. Другими словами, решение — это выбор направления для выполнения программы или алгоритма в зависимости от некоего переменного условия. Графический вид данного элемента – это ромб. Упомянутый символ может использоваться в качестве изображения следующих унифицированных структур: выбор, развилка полная и неполная, цикл «до» и «пока».

3. Модификация. Этот блок означает начало цикла. Он применяется для организации циклической конструкции. Внутри такого элемента записывают параметр круга действий, указывают его начальные значения, граничное условие, а также шаг изменения параметра для последующего повторения. Другими словами, модификация — это выполнение меняющихся команд или их групп, операций, изменяющих программу. Графическое изображение этого символа представляет собой шестиугольник.

4. Предопределенный процесс означает вычисление по заданной или стандартной программе. Его используют для указания обращения к вспомогательному алгоритму, который существует автономно в виде отдельных самостоятельных модулей, а также для обращения к библиотечным подпрограммам. Графически вид этого символа представлен прямоугольником с двумя вертикальными полями по краям. Этот элемент служит для указаний обращений к функциям, процедурам, программным модулям.

5. Ввод-вывод данных в общем виде.

6. Пуск и остановка. Этот элемент означает начало и конец алгоритма, а также вход в программу и выход из неё. Графически данный символ напоминает прямоугольник, у которого вместо боковых прямых – дуги.

7. Документ означает вывод результатов работы на печать. Графически такой элемент напоминает прямоугольник, только вместо нижней прямой начертана полуволна.

8. Ручной ввод означает пуск данных в процесс обработки оператором с помощью устройства, которое сопряжено с компьютером (клавиатура). Графический символ ручного ввода представляет собой четырехугольник, у которого боковые линии параллельны, нижняя перпендикулярна им, а верхняя косая.

9. Дисплей означает ввод или вывод информации в случае, когда устройство непосредственно подключено к процессору. В тот момент, когда начинают воспроизводиться данные, оператор может вносить изменения во время их обработки. Графически данный элемент представляет фигуру, у которой нижняя и верхняя линии параллельны, правая — это дуга, а левая состоит из двух прямых в виде стрелки.

10. Линии потока – это стрелки, которые указывают последовательность связей. Ни одна блок-схема структуры не может обходиться без данного элемента. Существуют определенные правила начертания этих символов. Перечислим их:

— данные элементы должны быть параллельными линиям внешнего периметра или границам страницы, на которой изображена эта блок-схема;

— направление линии сверху вниз или слева направо считается основным, стрелками оно не обозначается, остальные случаи указания направлений обозначены ими;

— изменение направления данного элемента производится только под углом 90 о .

11. Соединитель. Данный элемент предназначен для указания связи на прерванных линиях потока. Эти символы используются в том случае, если блок-схема программы строится из нескольких частей. Тогда линия потока от одной части должна закончиться «соединителем», а новой части — начаться с данного символа. Внутри такого элемента ставится один и тот же порядковый номер. Графическое изображение «соединителя» — это круг.

12. Межстраничный соединитель. Назначение этого элемента аналогично предыдущему, только используется он для соединения блок-схем, размещенных на разных страницах. Изображение такого элемента представлено пятиугольником в виде домика.

13. Комментарий – это связь между различными элементами блок-схемы с пояснениями. Упомянутый элемент позволяет включать в себя формулы и прочую информацию.

Построение блок-схем

Графическое построение алгоритма — это часть документации к устройству или программе, которая всегда имеется в избытке. Однако в большинстве случаев программное обеспечение вообще не нуждается в блок-схеме. Лишь единицам требуется построение алгоритма, занимающего несколько листов, остальным же достаточно символичной схемы. Простая блок-схема показывает структуру ветвления программ только в одном аспекте. Однако даже такая структура четко видна только при условии, что алгоритм помещается на одном листе. В обратном случае, когда блок-схема расположена на нескольких страницах, связанных межстраничными переходами, весьма сложно получить о ней верное представление. Если она размещается на одном листе, то для большой программы данное изображение алгоритма превращается в ее общий план с перечнем главных блоков и этапов. Конечно же, такой график не следует стандартам построения схем, но он и не нуждается в них, так как этот процесс полностью индивидуален. Правила, касающиеся типа символов, стрелок и порядка нумерации, необходимы только для разбора подробных блок-схем.

Массивы и построение алгоритмов

Массив представляет собой совокупность однотипной информации, которая хранится в последовательных кластерах памяти и имеет общее имя. Такие ячейки называются «элементами системы». Все кластеры нумеруются по порядку. Такой номер называется «индексом элемента массива». Как составить блок-схему для подобной системы? Рассмотрим пример создания алгоритма для элементарного массива одномерного типа. Простейшая система имеет условно вид строки. Зададим имя для данного массива – «А». Будем считать, что наша система состоит из восьми ячеек (от 1 до 8). Каждый из упомянутых кластеров содержит случайное число, которое называется «элементом массива». Для обращения в конкретной ячейке необходимо указывать имя в квадратных скобках ([3]). Рассмотрим пример, в котором блок-схема массива предназначена для заполнения системы случайными числами с последующим выводом информации на экран. Что представляет собой такой алгоритм? Это элементарная система. По сути, она не имеет практического применения, однако удобна для учебного процесса. Рассматриваемая блок-схема (пример построения описан ниже) содержит всего семь основных элементов, соединенных линиями переходов.

Описание последовательности выполнения задачи

1. Первым элементом схемы будет символ «Начало».

2. Вторым блоком – «Процесс», внутри которого вписываем «инициализация random».

3. Следующий элемент – «Модификация», в блоке вписываем значение ячеек массива.

4. Далее, согласно заданной функции, происходит переадресация на следующий блок «процесса», в котором задается обращение к конкретным кластерам системы с указанием ограничения случайных чисел в диапазоне от нуля до ста. После проведения данной операции происходит возврат к третьему блоку, а через него — далее на пятый.

5. В этом блоке «Модификации», согласно вписанной функции, происходит переадресация на следующий элемент.

6. «Вывод» производит отображение информации о новом содержимом массива на мониторе с последующим направлением на предыдущий блок. Далее — на последний элемент.

7. «Конец» работы алгоритма.

На базе такой блок-схемы составляется программа, которая обеспечит работу представленного алгоритма.

«Редактор блок-схем»

Если вы задаетесь вопросом о том, как составить блок-схему, то знайте, что существуют специальные программы, которые предназначены для создания, а также редактирования таких систем. Удобством графического отображения алгоритма является то, что пользователь не привязан к синтаксису конкретного языка программирования. Построенная блок-схема одинаково подходит для всех языков (например, С, Паскаль, Бейсик и другие). Кроме того, редактор может использоваться для построения диаграмм и проверки работоспособности схем. Такая программа является специализированным софтом. Она предоставляет разнообразный набор инструментов, необходимых для построения блок-схем, что делает ее более удобной, по сравнению с обычными графическими редакторами. Дополнительные опции позволяют оптимизировать процесс составления системы с дальнейшим ее преобразованием в функции и процедуры языка программирования. Кроме того, редактор блок-схем предлагает набор шаблонов, способных существенно ускорить работу начинающего пользователя. Ведь известно, что при построении алгоритма часто применяются повторяющиеся структуры, например разнообразные варианты циклов, альтернативы (полные и неполные), множественные ветвления и прочее. Редактор позволяет выделять часто используемые в блок-схемах элементы и добавлять их в создаваемую схему. Это избавляет от прорисовки их каждый раз заново. Кроме того, с помощью редактора можно импортировать функции и процедуры, реализованные на любом известном языке программирования. Данная опция полезна для разбора структуры алгоритма, который написан на малознакомом языке. Системные требования рассматриваемой программы довольно скромные, что позволяет использовать ее на любом персональном компьютере.

Заключение

Подводя итог, следу отметить, что подробные схемы построения алгоритмов уже устарели. В качестве описания процесса они никому не интересны. В лучшем случае блок-схемы пригодны для проведения обучения новичков, которые не умеют алгоритмически мыслить. Предложенные в свое время элементы со своим содержанием являлись языком высокого уровня, они объединяли операторов языка машины в отдельные группы. На данный момент каждый графический элемент соответствует конкретному оператору. Значит, сам символ превратился в случайное, а главное — бесполезное занятие по рисованию, от которого легко можно отказаться. Сегодня стали лишними даже линии переходов, так как каждый оператор уже определен. В действительности графическое построение алгоритмов больше превозносится, чем применяется на практике. Программист с большим опытом работы, прежде чем написать программу, редко чертит блок-схему. Когда стандарт организации требует графический алгоритм, то рисуют его уже после окончания работ.

Источник: http://fb.ru/article/132057/kak-sozdat-blok-shemu-blok-shema-programmyi-massiva

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

ЧИТАЙТЕ ТАКЖЕ:  как сделать из телефона компьютер

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».

Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов: «При аварии выдернуть шнур, выдавить стекло».

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

  1. Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
  2. От начального блока до конечного должны быть проведены линии связи.
  3. Из всех блоков, кроме конечного, должны выходить линии потока.
  4. Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
  5. Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
  6. Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
  7. От начального блока в схеме линия потока только выходит, так как он является самым первым.
  8. А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
  9. Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
  10. Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
  11. Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:

  1. «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
  2. «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
  3. «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Что такое цикл с постусловием?

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:

ЧИТАЙТЕ ТАКЖЕ:  как сделать папку на рабочем столе андроид

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Или пример из биологии для решения поставленной задачи:

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у 2 =4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.

Источник: http://www.syl.ru/article/373722/blok-shema-primeryi-elementyi-postroenie-blok-shemyi-algoritmov

Итак, опустив долгие и нудные восхваления Паскаля, которые так любят публиковать в своих статьях редакторы многих сайтов, приступим непосредственно к самому основному – к программированию.

В школах, как правило, изучение Паскаля начинают с решения простейших задач путем составления различных алгоритмов или блок-схем, которое многие так часто игнорируют, считая никому не нужной ерундой. А зря. Я, как и любой другой человек, хоть немного соображающий в программировании (не важно где – в Паскале, Си, Дельфи), могу уверить Вас – умение правильно и быстро составлять схемы является фундаментом, основой программирования.

Блок-схема — графическое представление алгоритма. Она состоит из функциональных блоков, которые выполняют различные назначения (ввод/вывод, начало/конец, вызов функции и т.д.).

Существует несколько основных видов блоков, которые нетрудно запомнить:

Сегодняшний урок я решила посвятить не только изучению блок-схем, но также и изучению линейных алгоритмов. Как Вы помните, линейный алгоритм — наипростейший вид алгоритма. Его главная особенность в том, что он не содержит никаких особенностей. Как раз это и делает работу с ним простой и приятной.

Задача №1: «Рассчитать площадь и периметр прямоугольника по двум известным сторонам».

Данная задача не должна представлять особой трудности, так как построена она на хорошо известных всем нам формулах расчета площади и периметра прямоугольника, поэтому зацикливаться на выведении этих формул мы не будем.

Составим алгоритм решения подобных задач:

1) Прочитать задачу.
2) Выписать известные и неизвестные нам переменные в «дано». (В задаче №1 к известным переменным относятся стороны: a,b ;к неизвестным — площадь S и периметр P)
3) Вспомнить либо составить необходимые формулы. (У нас: S=a*b; P=2*(a+b))
4) Составить блок-схему.
5) Записать решение на языке программирования Pascal.

Запишем условие в более кратком виде.

Решение задачи №1

Структура программы, решающей данную задачу, тоже проста:

  • 1) Описание переменных;
  • 2) Ввод значений сторон прямоугольника;
  • 3) Расчет площади прямоугольника;
  • 4) Расчет периметра прямоугольника;
  • 5) Вывод значений площади и периметра;
  • 6) Конец.

А вот и решение:

Задача №2: Скорость первого автомобиля — V1 км/ч, второго – V2 км/ч, расстояние между ними S км. Какое расстояние будет между ними через T часов, если автомобили движутся в разные стороны? Значения V1, V2, T и S задаются с клавиатуры.

Решение осуществляем, опять же, следуя алгоритму. Прочитав текст, мы переходим к следующему пункту. Как и во всех физических или математических задачах, это запись условий задачи:

Дано: V1, V2, S, Т
Найти: S1

Далее идет самая главная и в то же время самая интересная часть нашего решения – составление нужных нам формул. Как правило, на начальных стадиях обучения все необходимые формулы хорошо нам известны и взяты из других технических дисциплин (например, на нахождение площади различных фигур, на нахождение скорости, расстояния и т.п.).

Формула, используемая для решения нашей задачи, выглядит следующим образом:

Следующий пункт алгоритма – блок-схема:

Решение задачи №2.

А также решение, записанное в Pascal :

Вам может показаться, что две эти программы правильны, но это не так. Ведь сторона треугольника может быть 4.5, а не 4, а скорость машины не обязательно круглое число! А Integer — это только целые числа. Поэтому при попытке написать во второй программе другие числа выскакивает ошибка:

Обратите внимание в Паскале, как и в любом другом языке программирования десятичная дробь вводится с точкой, а не с запятой!

Чтобы решить эту проблему вам надо вспомнить какой тип в Pascal отвечает за нецелые числа. В этом уроке мы рассматривали основные типы. Итак, это вещественный тип — Real. Вот, как выглядит исправленная программа:

Как видите, эта статья полезна для прочтения как новичкам, так и уже более опытными пользователям Pascal, так как составление блок-схем не только очень простое и быстрое, но и весьма увлекательное занятие.

Источник: http://learnpascal.ru/vvedenie-v-paskal/blok-sxema.html

Пуск-остановка (терминатор) – элемент, отображающий вход или выход из внешней среды. Чаще всего используется в начале и конце программы.

Процесс – символ, отображающий выполнение операции (одной или нескольких), которая приводит: а) к изменению формы, значения или размещения информации; б) к определению, по какому направлению потока нужно двигаться.

Решение – элемент, показывающий функцию или решение переключательного типа, которая имеет один вход и два (или более) альтернативных выхода. После вычисления условий, которые определены внутри этого символа, может быть выбран только один из выходов.

Предопределенный процесс – символ, отображающий выполнение процесса, определенного в другом месте схемы. Может состоять из одной или нескольких операций.

Данные (ввод-вывод) – элемент, показывающий преобразование данных в определенную форму, которая пригодна для обработки (ввод) или для описания итогов обработки (вывод).

Граница цикла — символ, состоящий из двух элементов. Операции, которые выполняются внутри цикла (его начало и конец), размещаются между этими элементами.

Соединитель – символ для отображения входа в часть схемы и входа из другой части этой же схемы. Применяется, когда необходимо оборвать линию, а затем начать составление блок-схемы в другом месте.

Комментарий – элемент, используемый для более объемного описания какого-либо шага, процесса или ряда процессов.

Источник: http://www.kakprosto.ru/kak-3693-kak-sostavit-blok-shemu

Блок-схемы — это схемы, на которых показаны этапы процесса. Простые блок-схемы легко создавать, а благодаря простоте и наглядности фигур они также удобны для восприятия.

Примечание. Вы также можете автоматически создать простую блок-схему на основе данных, используя визуализатор данных в Visio Pro для Office 365. Дополнительные сведения см. в статье Создание схем с помощью визуализатора данных.

Шаблон «Простая блок-схема» в Visio содержит фигуры, которые можно использовать для наглядного представления разнообразных процессов. Он особенно полезен для отображения простых бизнес-процессов, таких как процесс разработки предложения, показанный на рисунке ниже.

В дополнение к шаблону «Простая блок-схема» в Visio доступны различные шаблоны схем более узкого назначения, таких как схемы потоков данных, временные шкалы и модели программного обеспечения. Дополнительные сведения о различных шаблонах см. в статье Сведения о назначении каждого шаблона Visio.

Запустите приложение Visio.

Выберите категорию Блок-схема.

Дважды щелкните значок Простая блок-схема.

Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

Чтобы соединить элементы блок-схемы, наведите указатель мыши на первую фигуру, и щелкните стрелку, указывающую на фигуру, с которой требуется создать соединение. Если вторая фигура находится не рядом с первой, необходимо перетащить маленькую стрелку к центру второй фигуры.

Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем на вкладке Фигура в группе Стили фигур щелкните пункт Линия, наведите указатель на пункт Стрелки и выберите нужное направление и вид стрелки.

Автоматическое выравнивание и интервалы

Нажмите сочетание клавиш CTRL+A, чтобы выбрать все объекты на странице.

На вкладке Главная в группе Упорядочение нажмите кнопку Положение и выберите пункт Автовыравнивание и определение интервалов.

Если это не привело к нужному результату, отмените ее, нажав сочетание клавиш CTRL+Z, и воспользуйтесь другими параметрами меню кнопок Выравнивание и Положение.

Что представляют блок-схемы

При открытии шаблона Простая блок-схема открывается набор элементов Фигуры простой блок-схемы. Каждая фигура в этом наборе представляет собой тот или иной этап процесса. Но фигуры не имеют какого-то универсального смысла, их значение определяется создателями и пользователями блок-схем. В большинстве блок-схем используется три или четыре вида фигур, и этот диапазон расширяется только по специфической необходимости.

При этом названия фигур в Visio указывают на их применение. Ниже описаны наиболее распространенные фигуры.

Начало/конец. Эту фигуру следует использовать для представления первого и последнего этапа процесса.

Процесс. Фигура представляет собой стандартный этап процесса. Это одна из наиболее часто используемых фигур в любом процессе.

Решение. Эта фигура используется в точке, где выбор следующего этапа зависит от принятого решения. Вариантов может быть несколько, но чаще всего их два: «да» и «нет».

Подпроцесс. Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа). Такой подход удобен, если блок-схема получается слишком большой и сложной.

Документ. Эта фигура представляет этап, на котором создается документ.

Данные. Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой «Ввод/Вывод».

Ссылка на текущую страницу. Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

Ссылка на другую страницу. При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой «Подпроцесс» и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

Что представляют блок-схемы

Когда вы открываете шаблон «Простая блок-схема», также открывается набор элементов «Фигуры простой блок-схемы». Каждая фигура в наборе элементов соответствует конкретному шагу процесса.

В Visio 2010 есть множество других, специализированных наборов элементов и фигур, которые можно использовать в блок-схеме. Дополнительные сведения о других фигурах см. в статье Упорядочение и поиск фигур с помощью окна «Фигуры».

Начало/конец. Эту фигуру следует использовать для представления первого и последнего этапа процесса.

Процесс. Эта фигура представляет этап процесса.

Подпроцесс. Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа).

Документ. Эта фигура представляет этап, на котором создается документ.

Данные. Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой «Ввод/Вывод».

Ссылка на текущую страницу. Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

Ссылка на другую страницу. При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой «Подпроцесс» и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

Примечание: Не удается найти нужную фигуру? Дополнительные сведения о том, как найти другие фигуры, см. в статье Упорядочение и поиск фигур с помощью окна «Фигуры».

ЧИТАЙТЕ ТАКЖЕ:  что можно сделать из творога без муки
Создание блок-схемы

Откройте вкладку Файл.

Вкладка Файл не отображается

Если вкладка Файл не отображается, перейдите к следующему шагу процедуры.

Выберите команду Создать и пункт Блок-схема, а затем в списке Доступные шаблоны выберите элемент Простая блок-схема.

Нажмите кнопку Создать.

Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

Примечание: Сведения об использовании фигур для представления каждого шага процесса см. в разделе Что представляют блок-схемы.

Соедините фигуры блок-схемы одним из указанных ниже способов.

Соединение двух фигур друг с другом

На вкладке Главная в группе Инструменты нажмите кнопку Соединительная линия.

Перетащите точку соединения на первой фигуре к точке соединения на второй фигуре. После соединения фигур конечные точки соединительной линии становятся красными.

Соединение одной фигуры с несколькими с помощью одной точки соединения

По умолчанию используются прямоугольные соединительные линии, и соединение точки на фигуре с тремя другими фигурами выглядит как на рисунке ниже.

Чтобы соединительные линии исходили прямо из центральной точки первой фигуры и вели к точкам на всех других фигурах, необходимо задать Прямые соединительные линии, как показано на приведенном ниже рисунке.

На вкладке Главная в группе Сервис нажмите кнопку Соединительная линия.

Для каждой фигуры, к которой нужно присоединить первую, перетащите указатель от одной и той же точки соединения на первой фигуре до точки соединения на каждой из остальных фигур.

Щелкните каждую соединительную линию правой кнопкой мыши и выберите пункт Прямая соединительная линия.

Для возврата к обычному редактированию на вкладке Главная в группе Сервис нажмите кнопку Указатель.

Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем в группе Фигура щелкните стрелку справа от надписи Линия, наведите указатель на пункт Стрелки и выберите нужное направление.

Печать большой блок-схемы

Наиболее простой способ вывести на печать блок-схему, размеры которой превышают размеры бумаги, — распечатать ее на нескольких листах, а затем склеить их.

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему полностью. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны.

Чтобы распечатать большую блок-схему, сделайте следующее:

Откройте блок-схему, а затем на вкладке Конструктор в группе Параметры страницы нажмите кнопку Размер и выберите пункт Вписать в страницу.

Откройте вкладку Файл.

Вкладка Файл не отображается

Если вкладка Файл не отображается, перейдите к следующему шагу процедуры.

Выберите пункт Печать и нажмите кнопку Предварительный просмотр.

Чтобы распечатать блок-схему на нескольких листах бумаги, выполните указанные ниже действия.

В режиме предварительного просмотра в группе Печать нажмите кнопку Параметры страницы.

На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан.

Нажмите кнопку ОК.

В группе Просмотр щелкните Одна плитка, чтобы посмотреть, как будет выглядеть распечатанный документ на каждом листе. (Для перехода между страницами нажимайте Следующая плитка и Предыдущая плитка.)

Если документ выглядит правильно, в группе Печать нажмите кнопку Печать.

После завершения печати можно обрезать поля, расположить страницы надлежащим образом и склеить их.

Чтобы распечатать блок-схему на одном листе бумаги, выполните указанные ниже действия.

В режиме предварительного просмотра в группе Печать нажмите кнопку Параметры страницы.

На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан.

В меню Масштаб выберите Разместить не более чем на.

Справа от строки Разместить не более чем на введите значение 1 в поля стр. в ширину и стр. в высоту.

Нажмите кнопку ОК .

В группе Печать нажмите кнопку Печать.

Что представляют блок-схемы

Когда вы открываете шаблон «Простая блок-схема», также открывается набор элементов «Фигуры простой блок-схемы». Каждая фигура в наборе элементов соответствует конкретному шагу процесса.

Из фигур, входящих в набор элементов «Фигуры простой блок-схемы», широко используются только некоторые. Именно эти фигуры описаны ниже. Дополнительные сведения об остальных фигурах см. по ссылке (Менее популярные фигуры блок-схемы) в конце этого раздела.

Оконечная фигура. Эту фигуру следует использовать для представления первого и последнего этапа процесса.

Процесс. Эта фигура представляет этап процесса.

Заранее определенный процесс. Эту фигуру следует использовать для представления ряда этапов, которые в совокупности образуют подпроцесс, определенный в другом месте (часто на другой странице того же документа).

Решение. Эта фигура используется в точке, где выбор следующего этапа зависит от принятого решения. Вариантов может быть несколько, но чаще всего их два: «да» и «нет».

Документ. Эта фигура представляет этап, на котором создается документ.

Данные. Эта фигура указывает, что данные поступают в процесс или покидают его. Также эта фигура может представлять материалы. Иногда ее называют фигурой «Ввод/Вывод».

Фигуры блок-схемы. Щелкнув эту составную фигуру правой кнопкой мыши, можно выбрать любую из таких фигур: «Процесс», «Решение», «Документ» или «Данные». Любой текст, который вы введете на фигуре, или добавите в ее свойство «Данные фигуры», останется на ней.

Вот как выглядит эта фигура в наборе элементов:

Если перетащить фигуру на страницу документа и щелкнуть ее правой кнопкой мыши, откроется контекстное меню:

Хранимые данные. Эту фигуру следует использовать для этапа, результатом которого является сохранение данных.

Ссылка на текущую страницу. Маленький круг показывает, что следующий (предыдущий) этап находится в другом месте документа. Эта фигура особенно полезна на больших блок-схемах, где в противном случае пришлось бы использовать длинный соединитель, который сложно отследить.

Ссылка на другую страницу. При размещении этой фигуры на странице открывается диалоговое окно, в котором можно создать набор гиперссылок между двумя страницами блок-схемы или между фигурой «Подпроцесс» и отдельной страницей блок-схемы, на которой показаны этапы этого подпроцесса.

Менее популярные фигуры блок-схемы

Динамическая соединительная линия. Эта соединительная линия проходит в обход фигур, лежащих на ее пути.

Кривая соединительная линия. Это соединительная линия с настраиваемой кривизной.

Поле с автоподбором высоты. Это текстовое поле с рамкой, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Эта фигура не представляет этап процесса, но ее удобно использовать для размещения надписей на блок-схеме.

Примечание. Это поле в квадратных скобках, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Как и «Поле с автоподбором высоты», эта фигура не представляет этап процесса. Используйте ее для добавления примечаний к фигурам блок-схемы.

Ручной ввод. Это этап, на котором человек предоставляет информацию процессу.

Ручная операция. Это этап, который должен быть выполнен человеком.

Внутреннее хранилище. Эта фигура представляет данные, которые хранятся на компьютере.

Прямые данные. Эта фигура представляет данные, которые хранятся таким образом, что к каждой отдельной записи возможен прямой доступ. Это соответствует способу хранения данных на жестком диске компьютера.

Последовательные данные. Эта фигура представляет данные, которые сохраняются последовательно (например, данные на магнитной ленте). Считывать такие данные можно только последовательно. Например, чтобы обратиться к записи 7, нужно сначала просмотреть записи 1–6.

Карта и бумажная лента. Эта фигура представляет перфокарту или бумажную ленту. В ранних компьютерных системах перфокарты и бумажные ленты использовались для записи и чтения данных, а также для хранения и запуска программ.

Дисплей. Эта фигура представляет данные, отображаемые для пользователя (обычно на экране компьютера).

Подготовка. Эта фигура обозначает инициализацию переменных при подготовке к выполнению процедуры.

Параллельный режим. Эта фигура показывает, где два разных процесса могут работать одновременно.

Предел цикла. На этой фигуре показано максимально возможное количество повторений цикла до перехода к следующему этапу.

Передача управления. Эта фигура обозначает этап, на котором при выполнении некоторых условий происходит переход не к следующему, а к другому этапу.

Создание блок-схемы

В меню Файл наведите указатель мыши на пункт Создать, затем на пункт Блок-схема и выберите пункт Простая блок-схема.

Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

Соедините фигуры блок-схемы одним из указанных ниже способов.

Примечание: Сведения о других способах соединения фигур см. в статье Добавление соединителей между фигурами в Visio.

Соединение двух фигур друг с другом

На панели инструментов Стандартная щелкните инструмент Соединительная линия .

Перетащите точку соединения на первой фигуре к точке соединения на второй фигуре. После соединения фигур конечные точки соединительной линии становятся красными.

Соединение одной фигуры с несколькими с помощью одной точки соединения

По умолчанию используются прямоугольные соединительные линии, и соединение точки на фигуре с тремя другими фигурами выглядит как на рисунке ниже.

Чтобы соединительные линии исходили прямо из центральной точки первой фигуры и вели к точкам на всех других фигурах, необходимо задать Прямые соединительные линии, как показано на приведенном ниже рисунке.

На панели инструментов Стандартная щелкните инструмент Соединительная линия .

Для каждой фигуры, к которой нужно присоединить первую, сделайте следующее: перетащите одну и ту же точку соединения на первой фигуре к точке соединения на другой фигуре.

Щелкните каждую соединительную линию правой кнопкой мыши и выберите пункт Прямая соединительная линия.

На панели инструментов Стандартная щелкните инструмент Указатель , чтобы вернуться в обычный режим правки.

Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

Чтобы изменить направление соединительной линии, в меню Фигура наведите указатель мыши на пункт Операции и выберите пункт Обратить концы.

Печать больших блок-схем

Наиболее простой способ вывести на печать блок-схему, размеры которой превышают размеры бумаги, — распечатать ее на нескольких листах, а затем склеить их.

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему целиком. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны. Чтобы проверить, помещается ли блок-схема на страницу документа, используйте предварительный просмотр в диалоговом окне Параметры страницы (меню Файл, пункт Параметры страницы, вкладка Настройка печати).

1. Блок-схема. размер которой слишком велик для страницы документа Visio.

2. Блок-схема, которая помещается на страницу документа Visio.

Изменение размера страницы документа Visio в соответствии с размером блок-схемы

Когда открыта блок-схема, в меню Файл выберите пункт Параметры страницы.

Откройте вкладку Размер страницы.

На вкладке Размер страницы щелкните Изменять размеры по содержимому.

Чтобы увидеть, как блок-схема будет выглядеть на печати, в меню Файл выберите пункт Предварительный просмотр. На рисунке ниже показана блок-схема, которая будет распечатана на четырех листах формата Letter.

Печать больших блок-схем на нескольких листах бумаги

В меню Файл выберите пункт Параметры страницы.

На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан. Не нажимайте кнопку ОК.

Откройте вкладку Размер страницы и щелкните Изменять размеры по содержимому. В окне предварительного просмотра теперь видна разница между новой страницей и бумагой в принтере.

Нажмите кнопку ОК.

В меню Файл выберите пункт Предварительный просмотр, чтобы увидеть, как блок-схема будет выглядеть на печати.

Примечание: Между страницами могут отображаться затененные поля. Они соответствуют тем областям, которые будут распечатаны на обоих листах. Это позволяет склеить листы таким образом, чтобы на блок-схеме не было пустых промежутков.

После завершения печати можно обрезать поля, расположить страницы надлежащим образом и склеить их.

Источник: http://support.office.com/ru-ru/article/%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5-%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B9-%D0%B1%D0%BB%D0%BE%D0%BA-%D1%81%D1%85%D0%B5%D0%BC%D1%8B-e207d975-4a51-4bfa-a356-eeec314bd276

Ссылка на основную публикацию