как сделать дисперсионный анализ в excel

ВАЖНО! Для того, что бы сохранить статью в закладки, нажмите: CTRL + D

Задать вопрос ВРАЧУ, и получить БЕСПЛАТНЫЙ ОТВЕТ, Вы можете заполнив на НАШЕМ САЙТЕ специальную форму, по этой ссылке >>>

в появившемся диалоговом окне Анализ данных в списке Инструменты анализа выбрать процедуру Однофакторный дисперсионный анализ, указав курсором мыши и щелкнув левой кнопкой мыши. Затем нажать кнопку ОК;

в появившемся диалоговом окне задать Входной интервал, то есть ввести ссылку на диапазон анализируемых данных, содержащий все столбцы данных. Для этого следует навести указатель мыши на верхнюю левую ячейку диапазона данных, нажать левую кнопку мыши и, не отпуская ее, протянуть указатель мыши к нижней правой ячейке, содержащей анализируемые данные, затем отпустить левую кнопку мыши;

в разделе Группировка переключатель установить в положение по столбцам;

указать выходной диапазон, то есть ввести ссылку на ячейки, в которые будут выведены результаты анализа. Для этого следует поставить переключатель в положение Выходной интервал (навести указатель мыши и щелкнуть левой кнопкой), далее навести указатель мыши на правое поле ввода Выходной интервал и щелкнуть левой кнопкой мыши, затем указатель мыши навести на левую верхнюю ячейку выходного диапазона и щелкнуть левой кнопкой мыши. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные.

нажать кнопку ОК.

Результаты анализа. Выходной диапазон будет включать в себя результаты дисперсионного анализа: средние, дисперсии, критерий Фишера и другие показатели.

Источник: http://studfiles.net/preview/4391865/page:2/

Для рассмотрения однофакторного дисперсионного анализа в MS Excel решим следующий пример.

Пример 3.2.В таблице 3 приведены данные по объемам работ, выполненных на посадке декоративных кустарников за смену для четырех бригад.

Общее выборочное среднее равно

Вычислим статистику Фишера:

По таблицам распределения Фишера для a = 0,05 и степеней свободы k1 =3, k2 = 12 найдем критическое значение Fкр =3,49. Так как F> Fкр, то гипотезу H отклоняем, т.е. считаем, что объем ежедневной выработки зависит от работающей бригады. Оценим степень этой зависимости с помощью коэффициента детерминации. Для этого вычислим Q :

По формуле (48) получим: , это означает, что 84,7% общей вариации (изменчивости) ежесменного объема выработки связано с работающей бригадой.

В MS Excel для проведения однофакторного дисперсионного анализа использует­ся процедура Однофакторный дисперсионный анализ.

Для проведения дисперсионного анализа необходимо:

•ввести данные в таблицу, так чтобы в каждом столбце оказались данные, соот­ветствующие одному значению исследуемого фактора, а столбцы располагались в порядке возрастания (убывания) величины исследуемого фактора,

•выполнить команду Сервис > Анализ данных;

•в появившемся диалоговом окне Анализ данныхв списке Инструментыанализа выбрать процедуру Однофакторный дисперсионный анализ, указав курсором мыши и щелкнув левой кнопкой мыши. Затем нажать кнопку ОК;

•в появившемся диалоговом окне задать Входной интервал, то есть ввести ссылку на диапазон анализируемых данных, содержащий все столбцы данных. Для этого следует навести указатель мыши на верхнюю левую ячейку диапазона данных, нажать левую кнопку мыши и, не отпуская ее, протянуть указатель мыши к нижней правой ячейке, содержащей анализируемые данные, затем отпустить левую кнопку мыши;

•в разделе Группировка переключатель установить в положение по столбцам;

•указать Выходной диапазон, то есть ввести ссылку на ячейки, в которые будут выведены результаты анализа. Для этого следует поставить переключатель в положение Выходной интервал (навести указатель мыши и щелкнуть левой кноп­кой), далее навести указатель мыши на правое поле ввода Выходной интервал и щелкнуть левой кнопкой мыши, затем указатель мыши навести на левую верх­нюю ячейку выходного диапазона и щелкнуть левой кнопкой мыши. Размер выходного диапазона будет определен автоматически, и на экран будет выведе­но сообщение в случае возможного наложения выходного диапазона на исход­ные данные.

•нажать кнопку ОК.

Результаты анализа. Выходной диапазон будет включать в себя результаты дис­персионного анализа: средние, дисперсии, критерий Фишера и другие показатели.

Источник: http://cyberpedia.su/11xe445.html

Чтобы проанализировать изменчивость признака под воздействием контролируемых переменных, применяется дисперсионный метод.

Для изучения связи между значениями – факторный метод. Рассмотрим подробнее аналитические инструменты: факторный, дисперсионный и двухфакторный дисперсионный метод оценки изменчивости.

ЧИТАЙТЕ ТАКЖЕ:  как сделать нутеллу в домашних условиях видео

Дисперсионный анализ в Excel

Условно цель дисперсионного метода можно сформулировать так: вычленить из общей вариативности параметра 3 частные вариативности:

  • 1 – определенную действием каждого из изучаемых значений;
  • 2 – продиктованную взаимосвязью между исследуемыми значениями;
  • 3 – случайную, продиктованную всеми неучтенными обстоятельствами.

В программе Microsoft Excel дисперсионный анализ можно выполнить с помощью инструмента «Анализ данных» (вкладка «Данные» — «Анализ»). Это надстройка табличного процессора. Если надстройка недоступна, нужно открыть «Параметры Excel» и включить настройку для анализа.

Работа начинается с оформления таблицы. Правила:

  1. В каждом столбце должны быть значения одного исследуемого фактора.
  2. Столбцы расположить по возрастанию/убыванию величины исследуемого параметра.

Рассмотрим дисперсионный анализ в Excel на примере.

Психолог фирмы проанализировал с помощью специальной методики стратегии поведения сотрудников в конфликтной ситуации. Предполагается, что на поведение влияет уровень образования (1 – среднее, 2 – среднее специальное, 3 – высшее).

Внесем данные в таблицу Excel:

  1. Открываем диалоговое окно нашего аналитического инструмента. В раскрывшемся списке выбираем «Однофакторный дисперсионный анализ» и нажимаем ОК.
  2. В поле «Входной интервал» ввести ссылку на диапазон ячеек, содержащихся во всех столбцах таблицы.
  3. «Группирование» назначить по столбцам.
  4. «Параметры вывода» — новый рабочий лист. Если нужно указать выходной диапазон на имеющемся листе, то переключатель ставим в положение «Выходной интервал» и ссылаемся на левую верхнюю ячейку диапазона для выводимых данных. Размеры определятся автоматически.
  5. Результаты анализа выводятся на отдельный лист (в нашем примере).

Значимый параметр залит желтым цветом. Так как Р-Значение между группами больше 1, критерий Фишера нельзя считать значимым. Следовательно, поведение в конфликтной ситуации не зависит от уровня образования.

Факторный анализ в Excel: пример

Факторным называют многомерный анализ взаимосвязей между значениями переменных. С помощью данного метода можно решить важнейшие задачи:

  • всесторонне описать измеряемый объект (причем емко, компактно);
  • выявить скрытые переменные значения, определяющие наличие линейных статистических корреляций;
  • классифицировать переменные (определить взаимосвязи между ними);
  • сократить число необходимых переменных.

Рассмотрим на примере проведение факторного анализа. Допустим, нам известны продажи каких-либо товаров за последние 4 месяца. Необходимо проанализировать, какие наименования пользуются спросом, а какие нет.

  1. Посмотрим, за счет, каких наименований произошел основной рост по итогам второго месяца. Если продажи какого-то товара выросли, положительная дельта – в столбец «Рост». Отрицательная – «Снижение». Формула в Excel для «роста»: =ЕСЛИ((C2-B2)>0;C2-B2;0), где С2-В2 – разница между 2 и 1 месяцем. Формула для «снижения»: =ЕСЛИ(J3=0;B2-C2;0), где J3 – ссылка на ячейку слева («Рост»). Во втором столбце – сумма предыдущего значения и предыдущего роста за вычетом текущего снижения.
  2. Рассчитаем процент роста по каждому наименованию товара. Формула: =ЕСЛИ(J3/$I$11=0;-K3/$I$11;J3/$I$11). Где J3/$I$11 – отношение «роста» к итогу за 2 месяц, ;-K3/$I$11 – отношение «снижения» к итогу за 2 месяц.
  3. Выделяем область данных для построения диаграммы. Переходим на вкладку «Вставка» — «Гистограмма».
  4. Поработаем с подписями и цветами. Уберем накопительный итог через «Формат ряда данных» — «Заливка» («Нет заливки»). С помощью данного инструментария меняем цвет для «снижения» и «роста».

Теперь наглядно видно, продажи какого товара дают основной рост.

Двухфакторный дисперсионный анализ в Excel

Показывает, как влияет два фактора на изменение значения случайной величины. Рассмотрим двухфакторный дисперсионный анализ в Excel на примере.

Задача. Группе мужчин и женщин предъявляли звук разной громкости: 1 – 10 дБ, 2 – 30 дБ, 3 – 50 дБ. Время ответа фиксировали в миллисекундах. Необходимо определить, влияет ли пол на реакцию; влияет ли громкость на реакцию.

  1. Переходим на вкладку «Данные» — «Анализ данных» Выбираем из списка «Двухфакторный дисперсионный анализ без повторений».
  2. Заполняем поля. В диапазон должны войти только числовые значения.
  3. Результат анализа выводится на новый лист (как было задано).

Та как F-статистики (столбец «F») для фактора «Пол» больше критического уровня F-распределения (столбец «F-критическое»), данный фактор имеет влияние на анализируемый параметр (время реакции на звук).

Для примера также прилагаем факторный анализ отклонений в маржинальном доходе.

Источник: http://exceltable.com/otchety/faktornyy-dispersionnyy-analiz

Рассмотрим дисперсионный анализ на следующем примере: за месяц известны данные о выработке рабочего за время работы в первую и во вторую смены.

ЧИТАЙТЕ ТАКЖЕ:  как сделать погоду на рабочем столе

Таблица 2 — Исходные данные

Выработка рабочего, нормо-час

12,1; 11,1; 12,6; 12,9; 11,6; 13,1; 12,6; 12,4; 11,6; 17,3; 12,9; 11,6; 12,4

9,9; 11,4; 13,4; 10,4; 12,9; 12,6; 13,9; 13,4; 12,4; 9,9; 10,2; 11,2; 9,7

Можно ли считать, что расхождение между уровнями выработки рабочего в первую и во вторую смены несущественно, т.е. можно ли считать, что генеральные средние в двух подгруппах одинаковы и, следовательно, выработка рабочего может быть охарактеризована общей средней.

Для того чтобы ответить на поставленные вопросы, рассчитаем среднюю выработку рабочих в каждой смене. Величина выработки в первую и вторую смены различна. Теперь возникает вопрос о том, насколько существенны эти расхождения, нужно проверить предположение о возможном влиянии сменности на выработку рабочих. Результаты расчетов сведены в таблицу 3.

Таблица 3 — Промежуточные расчеты для проведения дисперсионного анализа

Средняя выработка, нормо-часы

Число смен в месяце

Сумма квадратов отклонений вариантов от групповой средней

Квадраты отклонений групповых средних от общей средней

Используя данные таблицы, рассчитаем и .

Число степеней свободы для расчета внутригрупповой дисперсии равно () 24 (26-2), а для расчета межгрупповой дисперсии число степеней свободы равно — 1 (2-1).

Рассчитаем значение критерия Фишера по следующей формуле:

В соответствии с числом степеней свободы для расчета внутригрупповой и межгрупповой дисперсий (24 и 1) в таблице F-распределения для б=5% находим Fтабл = 4.26.

При этом выдвигается две гипотезы. Нулевая гипотеза гласит о том, что различия выработки рабочего в первую и вторую смены несущественны. Альтернативная гипотеза: существуют существенные различия в значении выработки рабочего в первую и во вторую смены.

Так как расчетное значение критерия Фишера значительно меньше табличного значения критерия Фишера, то гипотеза о несущественности различия выработки рабочего в первую и вторую смены не опровергается, т.е. сменность не оказывает влияния на уровень выработки рабочего.

Для того, чтобы провести дисперсионный анализ в Excel, необходимо активировать команду «Анализ данных». Для этого проходится следующий путь: Сервис -> Надстройки -> Пакет анализа. После этого в меню «Сервис» появляется команда «Анализ данных» и выбирается команда «Однофакторный дисперсионный анализ».

Далее необходимо заполнить окно «Однофакторный дисперсионный анализ»:

«Входной интервал» — вводится ссылка на диапазон, содержащий анализируемые данные. Ссылка должна состоять не менее чем из двух смежных диапазонов данных, данные в которых расположены по строкам или столбцам.

«Группирование» — установите переключатель в положение. По столбцам или По строкам в зависимости от расположения данных во входном диапазоне.

«Метки в первой строке/Метки в первом столбце» — если первая строка исходного диапазона содержит названия столбцов, установите переключатель в положение Метки в первой строке. Если названия строк находятся в первом столбце входного диапазона, установите переключатель в положение Метки в первом столбце. Если входной диапазон не содержит меток, то необходимые заголовки в выходном диапазоне будут созданы автоматически.

«Альфа» — введите уровень значимости, необходимый для оценки критических параметров F-статистики. Уровень альфа связан с вероятностью возникновения ошибки типа I (опровержение верной гипотезы).

«Выходной диапазон» — введите ссылку на левую верхнюю ячейку выходного диапазона. Размеры выходной области будут рассчитаны автоматически, и соответствующее сообщение появится на экране в том случае, если выходной диапазон занимает место существующих данных или его размеры превышают размеры листа.

«Новый лист» — установите переключатель, чтобы открыть новый лист в книге и вставить результаты анализа, начиная с ячейки A1. Если в этом есть необходимость, введите имя нового листа в поле, расположенном напротив соответствующего положения переключателя.

«Новая книга» — установите переключатель, чтобы открыть новую книгу и вставить результаты анализа в ячейку A1 на первом листе в этой книге.

Пример заполнения окна «Однофакторный дисперсионный анализ» представлен на рисунке 2.

Рисунок 2 — Пример заполнения окна «Однофакторный дисперсионный анализ»

Результаты расчетов однофакторного дисперсионного анализа представлены на рисунке 3.

Источник: http://studbooks.net/2240913/matematika_himiya_fizika/vypolnenie_dispersionnogo_analiza_excel

Лабораторная работа 4

Определение основных статистических характеристик и дисперсионный анализ в MS Excel

Теоретические сведения

Раздел математики, посвященный методам сбора, анализа и обработки статистических данных для научных и практических целей, называется математической статистикой.

ЧИТАЙТЕ ТАКЖЕ:  донка с кормушкой как сделать схема

Данный раздел математики имеет дело с массовыми явлениями и тесно связан с теорией вероятностей, так как базируется на ее математическом аппарате.

Цель статистического исследования – исследование соотношений между статистическим данными (описательная статистика) и использование результатов данных исследований для прогнозирования и принятия решений (аналитическая статистика).

Статистические данные представляют собой данные, полученные в результате обследования большого числ объектов или явлений.

По охвату статистической совокупности исследование может быть сплошное или не сплошное. При сплошном исследовании группа формируется из всех единиц изучаемого явления (генеральная совокупность), а при не сплошном – только группа этих единиц (выборка).

Конечной же целью изучения выборочной совокупности (выборки) является получение информации не о ней самой как таковой, а о генеральной совокупности. Поэтому обычно стремятся сделать так, чтобы выборка наилучшим образом представляла генеральную совокупность, т. е. была репрезентативной и представительной.

Например, если мы хотим получить данные о поступающих во все вузы города, то абитуриенты данного университета есть выборка из более широкой генеральной совокупности – всех абитуриентов вузов города, и тем не менее эта выборка не обязательно будет являться представительной. В тех же случаях, когда генеральная совокупность недостаточно известна, обычно не удается предложить более лучшего способа чем случайный выбор элементов для выборки.

Возможности MS Excel для анализа данных

В мастере функций Excel имеется ряд специальных функций, предназначенных для вычисления выборочных характеристик. Функция СРЗНАЧ вычисляет среднее арифметическое из нескольких массивов (аргументов) чисел. Аргументы число1, число2, . — это от 1 до 30 массивов для которых вычисляется среднее.

Функция МЕДИАНА позволяет получать медиану заданной выборки.

Функция МОДА вычисляет наиболее часто встречающееся значение в выборке.

Функция ДИСП позволяет оценить дисперсию по выборочным данным.

Функция СТАНДОТКЛОН вычисляет стандартное отклонение.

Задание 1. Определение основных статистических характеристик

Пример 1. Провести статистический анализ методом описательной статистики доходов населения в регионе 1 и регионе 2.

Рисунок 1. Определение основных статистических характеристик

1. Найти среднее значение, медиану, моду, стандартное отклонение результатов бега на дистанцию 100 м у группы студентов (с): 12,8; 13,2; 13,0; 12,9; 13,5; 13,1.

2. Определите основные статистические характеристики для данных измерений роста групп студенток: 164, 160, 157, 166, 162, 160, 161, 159, 160, 163, 170, 171.

3. Найти наиболее популярный туристический маршрут из четырех реализуемых фирмой, если за неделю последовательно были реализованы следующие маршруты: 1, 3, 3, 2, 1, 1, 4, 4, 2, 4, 1, 3, 2, 4, 1, 4, 4, 3, 1, 2, 3, 4, 1, 1, 3.

ДИСПЕРСИОННЫЙ АНАЛИЗ В MS EXCEL

1. Создать файл с исходными данными.

2. Запустить “Пакет анализа”.

В системе электронных таблиц Microsoft Excel имеется набор инструментов для анализа данных, называемый пакет анализа, который может быть использован для решения сложных статистических задач. Для использования одного из этих инструментов указать входные данные и выбрать параметры; анализ будет проведен с помощью подходящей статистической макрофункции, и результаты будут представлены в выходном диапазоне.

В меню Сервис выберите команду Анализ данных. Если такая команда отсутствует в меню Сервис, то необходимо установить в Microsoft Excel пакет анализа данных.

Установка производится следующим образом. В меню Сервис выберите команду Надстройки. Если в списке надстроек нет пакета анализа данных, то нажмите кнопку “Обзор” и задайте диск, каталог и имя файла для надстройки “Пакет анализа”, или запустите программу установки Microsoft Excel. Установите флажок “Пакет анализа” (надстройки, установленные в Microsoft Excel, остаются доступными, пока не будут удалены).

Выберите необходимую строку в списке “Инструменты анализа”.

Введите входной и выходной диапазоны, затем выберите необходимые параметры. Для использования инструментов анализа исследуемые данные следует представить в виде строк или столбцов на листе. Совокупность ячеек, содержащих анализируемые данные, называется входным диапазоном.

3. Провести однофакторный дисперсионный анализ.

В меню Сервис выбираем команду Анализ данных.

В списке инструментов статистического анализа выбираем Однофакторный дисперсионный анализ (Рисунок 9).

Источник: http://lektsii.org/10-4087.html

Ссылка на основную публикацию