как сделать обратную матрицу в excel

ВАЖНО! Для того, что бы сохранить статью в закладки, нажмите: CTRL + D

Задать вопрос ВРАЧУ, и получить БЕСПЛАТНЫЙ ОТВЕТ, Вы можете заполнив на НАШЕМ САЙТЕ специальную форму, по этой ссылке >>>

Подробно рассмотрим особенности вычисления обратной матрицы в Excel и примеры использования функции МОБР.

В первую очередь освежим в памяти, что обратная матрица — это матрица (записывается как A -1 ), при умножении которой на исходную матрицу (A) дает единичную матрицу (E), другими словами выполняется формула:

Из определения следует важное свойство, что обратная матрица определена только для квадратных (т.е. число строк и столбцов совпадает) и невырожденных матриц (т.е. определитель отличен от нуля).

Как найти обратную матрицу в Excel?

В отличие от транспонированной матрицы, вычислить обратную матрицу технически несколько сложнее.
Посчитать обратную матрицу можно через построение матриц алгебраических дополнений и определителя исходной матрицы.
Однако сложность вычисления по данному алгоритму имеет квадратичную зависимость от порядка матрицы.
К примеру, для обращения квадратной матрицы 3-го порядка нам необходимо будет дополнительно сделать 9 матриц алгебраических дополнений, транспонировать итоговую созданную матрицу и поэлементно разделить на определитель начальной матрицы, что затрудняет возможность подобного расчета в Excel.
Поэтому воспользуемся стандартной функцией МОБР, которая позволит найти обратную матрицу:

Функция МОБР

Синтаксис и описание функции МОБР в Excel:

МОБР(массив)
Возвращает обратную матрицу (матрица хранится в массиве).

  • Массив(обязательный аргумент) — числовой массив, содержащий матрицу с одинаковым числом столбцов и строк.

Рассмотрим расчет обратной матрицы посредством функции МОБР на конкретном примере.
Предположим у нас имеется следующая квадратная матрица 3-го порядка:

Выделяем диапазон пустых ячеек E2:G4, куда мы в дальнейшем поместим обратную матрицу.
Не снимая выделения ячеек вводим формулу =МОБР(A2:C4) и нажимаем комбинацию клавиш Ctrl + Shift + Ввод для расчета формулы массива по данному диапазону:

При работе с функцией МОБР могут возникнуть следующие ошибки:

  • В том случае, когда исходная матрица является вырожденной (определитель равен нулю), то функция вернет ошибку #ЧИСЛО!;
  • Если число строк и столбцов в матрице не совпадает, то функция возвратит ошибку #ЗНАЧ!;
  • Функция также вернет ошибку #ЗНАЧ!, если хотя бы один из элементов матрицы является пустым или записан в текстовом виде.

Источник: http://tutorexcel.ru/matematika/obratnaya-matrica-v-excel/

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() или англ. MINVERSE .

Понятие обратной матрицы определено только для квадратных матриц, определитель которых отличен от нуля.

СОВЕТ: О нахождении определителя матрицы читайте статью Вычисление определителя матрицы в MS EXCEL

Матрица А -1 называется обратной для исходной матрицы А порядка n, если справедливы равенства А -1 *А=Е и А*А -1 =Е, где Е единичная матрица порядка n.

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() .

Если элементы исходной матрицы 2 х 2 расположены в диапазоне А8:В9, то для получения транспонированной матрицы нужно (см. файл примера ):

  • выделить диапазон 2 х 2, который не пересекается с исходным диапазономА8:В9, например, Е8:F9
  • в Cтроке формул ввести формулу = МОБР (A8:B9) и нажать комбинацию клавиш CTRL+SHIFT+ENTER, т.е. нужно ввести ее как формулу массива (формулу можно ввести прямо в ячейку, предварительно нажав клавишу F2)

Если матрица большей размерности, то перед вводом формулы нужно выделить соответственно больший диапазон ячеек.

Массив может быть задан не только как интервал ячеек, например A8:B9, но и как массив констант, например =МОБР(<5;4: 3;2>) . Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией. Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

Ссылка на массив также может быть указана как ссылка на именованный диапазон.

Некоторые квадратные матрицы не могут быть обращены: в таких случаях функция МОБР() возвращает значение ошибки #ЧИСЛО!. Матрицы не могут быть обращены, у которых определитель равен 0.

Если функция МОБР() вернула значение ошибки #ЗНАЧ!, то либо число строк в массиве не равно числу столбцов, либо какая-либо из ячеек в массиве пуста или содержит текст. Т.е. функция МОБР() пустую ячейку воспринимает не как содержащую 0 (как например, это делает СУММ() ), а как ошибочное значение.

Вычисление обратной матрицы с помощью матрицы из алгебраических дополнений

СОВЕТ: Этот раздел стоит читать только продвинутым пользователям MS EXCEL. Кроме того материал представляет только академический интерес, т.к. есть функция МОБР() .

В файле примера приведен расчет обратной матрицы 3-го порядка через матрицу алгебраических дополнений.

Порядок действий при вычислении обратной матрицы:

  • Вычисляем определитель матрицы А (далее — Det(A)) и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима)
  • Строим матрицу из алгебраических дополнений элементов исходной матрицы
  • Транспонируем матрицу из алгебраических дополнений
  • Умножаем каждый элемент транспонированной матрицы из алгебраических дополнений на 1/Det(A) и получаем обратную матрицу

В качестве проверки можно перемножить исходную и обратную матрицы. В результате должна получиться единичная матрица.

Источник: http://excel2.ru/articles/vychislenie-obratnoy-matricy-v-ms-excel

Приложение Excel выполняет целый ряд вычислений, связанных с матричными данными. Программа обрабатывает их, как диапазон ячеек, применяя к ним формулы массива. Одно из таких действий – это нахождение обратной матрицы. Давайте выясним, что представляет собой алгоритм данной процедуры.

ЧИТАЙТЕ ТАКЖЕ:  как сделать форму для льда

Выполнение расчетов

Вычисление обратной матрицы в Excel возможно только в том случае, если первичная матрица является квадратной, то есть количество строк и столбцов в ней совпадает. Кроме того, её определитель не должен быть равен нулю. Для вычисления применяется функция массива МОБР. Давайте на простейшем примере рассмотрим подобное вычисление.

Расчет определителя

Прежде всего, вычислим определитель, чтобы понять, имеет первичный диапазон обратную матрицу или нет. Это значение рассчитывается при помощи функции МОПРЕД.

    Выделяем любую пустую ячейку на листе, куда будут выводиться результаты вычислений. Жмем на кнопку «Вставить функцию», размещенную около строки формул.

Запускается Мастер функций. В перечне записей, который он представляет, ищем «МОПРЕД», выделяем этот элемент и жмем на кнопку «OK».

Открывается окно аргументов. Ставим курсор в поле «Массив». Выделяем весь диапазон ячеек, в котором расположена матрица. После того, как его адрес появился в поле, жмем на кнопку «OK».

Расчет обратной матрицы

Теперь можно преступить к непосредственному расчету обратной матрицы.

    Выделяем ячейку, которая должна стать верхней левой ячейкой обратной матрицы. Переходим в Мастер функций, кликнув по значку слева от строки формул.

В открывшемся списке выбираем функцию МОБР. Жмем на кнопку «OK».

В поле «Массив», открывшегося окна аргументов функции, устанавливаем курсор. Выделяем весь первичный диапазон. После появления его адреса в поле, жмем на кнопку «OK».

  • Как видим, после этих действий обратная матрица вычислена в выделенных ячейках.
  • На этом расчет можно считать завершенным.

    Если вы производите расчет определителя и обратной матрицы только при помощи ручки и бумаги, то над этим вычислением, в случае работы над сложным примером, можно ломать голову очень долго. Но, как видим, в программе Эксель данные вычисления производятся очень быстро, независимо от сложности поставленной задачи. Для человека, который знаком с алгоритмом подобных расчетов в этом приложении, все вычисление сводится к чисто механическим действиям.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Помогла ли вам эта статья?

    Еще статьи по данной теме:

    Добрый день! Подскажите как найти методом обратной матрицы решение системы линейных уравнений:
    2×1 – 3×2 – x3 + 6 = 0
    3×1 + 4×2 + 3×3 + 5 = 0
    x1 + x2 + x3 + 2 = 0

    Задайте вопрос или оставьте свое мнение Отменить комментарий

    Виктор Бухтеев: 1 июля в 15:21

    SSCServiceUtility Здравствуйте. Напряжение на контактах блока питания в дежурном режиме должно быть 11 и 8.5 В.

    Сергей: 1 июля в 15:18

    SSCServiceUtility до чистки работал . принтер кенон mp510 не включается . раазобрал почистил от пыли собрал , даже кнопка питания не горит . помогите , какое напряжение должно быть на блоке питания , без нагрузки

    Александра: 1 июля в 15:16

    Учимся добавлять формулы в Microsoft Word У меня тоже были проблемы с редактированием и удалением формул при написании дипломного проэкта. Основную информацию брала в интернете, а помощь с формулами искала на сайте https://www.formula-del.ru/. Сделали все быстро, качественно. Общалась с людьми в Скайпе и Телеграмме, так что проблем с коммуникацией вообще не было. Если вдруг кому-то нужна

    Аноним: 1 июля в 15:09

    Аноним: 1 июля в 14:52

    Запись видео в Skype здравствуйте.программой HDD Low Level Format Tool выполняю низкоуровневое форматирование.используя инструкцию на вашем сайте.вопрос-Работать с флешкой после проведения низкоуровневого форматирования нельзя.что делать дальше.При таком способе на носителе нет таблицы разделов. Для полноценной работы с накопителем нужно провести стандартное высокоур

    Сергей: 1 июля в 14:51

    SSCServiceUtility принтер кенон mp510 не включается . раазобрал почистил от пыли собрал , даже кнопка питания не горит . помогите , какое напряжение должно быть на блоке питания , без нагрузки

    Виктор: 1 июля в 14:13

    Поиск циклической ссылки в Excel По указанным 2 способам циклическая ошибка не уходит, смежите посмотреть через тимвифер?

    Источник: http://lumpics.ru/the-inverse-matrix-in-excel/

    Программа Microsoft Office Excel позволяет выполнять операции с матрицами с помощью встроенных функций и формул. Рассмотрим основные операции над матрицами:

    • умножение и деление матрицы на число;
    • сложение, вычитание и умножение матриц;
    • транспонирование матрицы;
    • нахождение обратной матрицы;
    • вычисление определителя.

    Введем условные обозначения. Матрица А размерностью i x j — это прямоугольная таблица чисел, состоящая из i строк и j столбцов, аij — элемент матрицы.

    Умножение и деление матрицы на число в Excel

    Рассмотрим матрицу А размерностью 3х4. Умножим эту матрицу на число k. При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k.

    Введем элементы матрицы в диапазон В3:Е5, а число k — в ячейку Н4. В диапазоне К3:N5 вычислим матрицу В, полученную при умножении матрицы А на число k: В=А*k. Для этого введем формулу =B3*$H$4 в ячейку K3, где В3 — элемент а11 матрицы А.

    Примечание: адрес ячейки H4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

    С помощью маркера автозаполнения копируем формулу ячейки К3 вниз и вправо на весь диапазон матрицы В.

    Таким образом, мы умножили матрицу А в Excel и получим матрицу В.

    Для деления матрицы А на число k в ячейку K3 введем формулу =B3/$H$4 и скопируем её на весь диапазон матрицы В.

    ЧИТАЙТЕ ТАКЖЕ:  как сделать восстановление айфона через айтюнс

    Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

    Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

    Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

    Сложение и вычитание матриц в Excel

    Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В, т.е. сij = аij + bij.

    Рассмотрим матрицы А и В размерностью 3х4. Вычислим сумму этих матриц. Для этого в ячейку N3 введем формулу =B3+H3, где B3 и H3 – первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H3), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

    С помощью маркера автозаполнения скопируем формулу из ячейки N3 вниз и вправо на весь диапазон матрицы С.

    Для вычитания матрицы В из матрицы А (С=А — В) в ячейку N3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С.

    Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

    Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А, нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

    Умножение матриц в Excel

    Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В.

    Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2. При умножении этих матриц получится матрица С размерностью 3х2.

    Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ(). Для этого выделим диапазон L3:M5 — в нём будут располагаться элементы матрицы С, полученной в результате умножения. На вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖОК.

    В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В. Для этого напротив массива1 щёлкнем по красной стрелке.

    Выделим диапазон, содержащий элементы матрицы А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

    Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

    Выделим диапазон, содержащий элементы матрицы В, и щелкнем по красной стрелке.

    В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С. После ввода значений нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы С.

    Мы получим результат умножения матриц А и В.

    Мы можем изменить значения ячеек матриц А и В, значения матрицы С поменяются автоматически.

    Транспонирование матрицы в Excel

    Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу А Т .

    Пусть дана матрица А размерностью 3х4, с помощью функции =ТРАНСП() вычислим транспонированную матрицу А Т , причем размерность этой матрицы будет 4х3.

    Выделим диапазон Н3:J6, в который будут введены значения транспонированной матрицы.

    На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСПОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы А Т .

    Нажмите для увеличения

    Мы получили транспонированную матрицу.

    Нахождение обратной матрицы в Excel

    Матрица А -1 называется обратной для матрицы А, если АžА -1 =А -1 žА=Е, где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

    Пусть дана матрица А размерностью 3х3, найдем для неё обратную матрицу с помощью функции =МОБР().

    Для этого выделим диапазон G3:I5, который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем категорию Математические — функция МОБРОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы А -1 .

    ЧИТАЙТЕ ТАКЖЕ:  как сделать торт панчо

    Нажмите для увеличения

    Мы получили обратную матрицу.

    Нахождение определителя матрицы в Excel

    Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

    Как найти определить матрицы в Excel

    Пусть дана матрица А размерностью 3х3, вычислим для неё определитель с помощью функции =МОПРЕД().

    Для этого выделим ячейку Н4, в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕДОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем ОК.

    Нажмите для увеличения

    Мы вычислили определитель матрицы А.

    В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del, то программа выдаст предупреждение: Нельзя изменять часть массива.

    Нажмите для увеличения

    Мы можем удалить только все элементы этой матрицы.

    Кратко об авторе:

    Шамарина Татьяна Николаевна — учитель физики, информатики и ИКТ, МКОУ «СОШ», с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

    Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
    стало известно автору, войдите на сайт как пользователь
    и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

    Есть мнение?
    Оставьте комментарий

    Понравился материал?
    Хотите прочитать позже?
    Сохраните на своей стене и
    поделитесь с друзьями

    Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

    Источник: http://pedsovet.su/excel/6080_operacii_s_matricami

    В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

    Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

    Формулы массива

    Построение матрицы средствами Excel в большинстве случаев требует использование формулы массива. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел).

    Порядок применения формулы массива:

    1. Выделить диапазон, где должен появиться результат действия формулы.
    2. Ввести формулу (как и положено, со знака «=»).
    3. Нажать сочетание кнопок Ctrl + Shift + Ввод.

    В строке формул отобразится формула массива в фигурных скобках.

    Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). Часть массива изменить невозможно.

    Решение матриц в Excel

    С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

    Транспонирование

    Транспонировать матрицу – поменять строки и столбцы местами.

    Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

    • 1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.
    • 2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

    Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

    Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

    Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

    В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

    Умножение матриц в Excel

    Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

    Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

    В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

    Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

    Обратная матрица в Excel

    Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

    Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

    Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

    Нахождение определителя матрицы

    Это одно единственное число, которое находится для квадратной матрицы. Используемая функция – МОПРЕД.

    Ставим курсор в любой ячейке открытого листа. Вводим формулу: =МОПРЕД(A1:D4).

    Таким образом, мы произвели действия с матрицами с помощью встроенных возможностей Excel.

    Источник: http://exceltable.com/funkcii-excel/funkcii-dlya-raboty-s-matricami

    Ссылка на основную публикацию